

CEEDATA energy analysis

Nuclear power - the glossy pretender

Manchester, 12 June 2009

J.W. Storm van Leeuwen

storm@ceedata.nl

Nuclear power - the glossy pretender

A glossy image from the nuclear industry

A nuclear reactor generates heat and radioactivity inextricable and irreversible

Nuclear power - the glossy pretender

Outline

- nucleair chain
- energy quality of uranium resources
- coal equivalence
- energy cliff
- CO₂ trap
- energy on credit: energy debt
- do we need nuclear power?

The nuclear chain: nuclear power from cradle to grave

Nuclear power: Technically the most complex system ever

- inconvenient to policy makers
- costs and safety practically uncontrollable
- politicians advised by interest groups

Uranium ore E quality

energy to extract 1 kg U from a given ore

Uranium resources and E quality

The lower E quality of ore, the more uranium present in crust

Coal equivalence

At 200 grams U per tonne rock: mass of uranium ore = mass of coal to produce same amount of electricity.

Depletion of the known U resources

Energy cliff over time

The CO₂ trap: nuclear CO₂ emission over time

Outlook uranium resources: economic view

- criterion: price of U
- higher U price > more exploration >
 - > more discoveries > larger U resources
- ergo: U resources practically inexhaustible

Outlook uranium resources: energy view

- criterion: extraction energy
- not the U price, but the ore quality counts
- beyond energy cliff:

nuclear power = energy sink

 ergo: net energy content world U resources limited

Next question

One reactor (1GWe) generates each year 200 nuclear bomb equivalents of radioactivity

Each year 74000 nuclear bomb equivalents added to world radioactive inventory of 2 million

We have just two options

- 1 keeping the country habitable our responsibility
- 2 waiting for disaster Après nous le déluge

Isolation of radioactivity from the biosphere in a geologic repository

The nuclear chain as it ought to be

cooking the meal consuming the meal washing the dishes

The nuclear chain as it happens to be

the dishes are piling up

Paradigm barrier

- Short-term profit seeking
- Après nous le déluge attitude

Après nous le déluge

Dispersion of radioactivity from 1 source

Nuclear power: energy on credit

- Energy debt
- CO₂ debt
- Monetary debt
- Privatisation of the profits, socialisation of the costs

Monetary debt, NDA first cost estimates:

- cleanup and decommissioning
 - Sellafield reprocessing plant £50-100bn
 - 1 nuclear power station £4-8bn/GWe
- geologic repository
 £ ?bn

Summary 1

Essential notions

- energy quality of uranium resources
- coal equivalence
- energy cliff
- CO₂ trap
- energy debt

Summary 2

uranium resources

- energy quality declines with time
- chance major new discoveries unknown

Do we need nuclear power?

We do not need nuclear power

- nor for climate control
- nor for energy security
- nor for geopolitical stability

Renewables

- free energy
- constant supply, flowing energy source
- constant quality
- · accessible to everyone: geopolitical stability
- no debts: nor E, nor CO2, nor €, £
- abundant

New paradigm

For sustainable development we need to merge

- short-term business domain
- long-term physical domain

thank you