The energy cliff

Royal Society London, 16 October 2006

J.W. Storm van Leeuwen

storm@ceedata.nl

2006

Energy debt

Energy debt 'capitalized'

Energy from uranium

Net energy extractable from a uraniumbearing deposit depends on its *quality*.

Main parameters:

- ore grade
- type of rock
- size of deposit
- depth of deposit
- location

Energy from uranium

Uranium resources ≠ energy resources

Dilution factor = kg(rock)/kg(U)

Extraction yield $Y = mU_{ex}/mU_{rock}$

J.W. Storm van Leeuwen 2006

Energy cliff

Uranium resources and ore grade (Red Book 2006, WNA)

U resources and the energy cliff

nuclear energy in the future

Scenario 1

World nuclear capacity remains constant at current level, 370 GW(e).
Share declines to < 1% of world energy supply by 2050, for rising world energy demand.

nuclear energy in the future

Scenario 2

World nuclear share remains constant at current level, 2.5% of world energy supply.
World nuclear capacity increases by 2-3% a year (7.5-10 GW/a), to keep pace with rising world energy demand.

Depletion of uranium resources in scenario 1, quantity and quality

J.W. Storm van Leeuwen 2006

Depletion of uranium resources in scenario 2, quantity and quality

J.W. Storm van Leeuwen 2006

Rise of specific CO₂ emission by nuclear power with time, scenario 1

J.W. Storm van Leeuwen 2006

Rise of specific CO₂ emission by nuclear power with time, scenario 2

J.W. Storm van Leeuwen 2006

The energy cliff in time, scenario 1. Net energy from nuclear power.

The energy cliff in time, scenario 2. Net energy from nuclear power.

Outlook

- Highest-quality uranium deposits already known and in production.
- Chances of finding new large highquality deposits extremely slim.
- New finds: the larger the deposit, the lower its quality.
- Lower quality means more energy consumed per kg extracted uranium.

Outlook

- New finds of uranium deposits will be closer to the energy cliff.
- Time of depletion of net nuclear energy from uranium ores may not change significantly in the future, nor by new finds, nor by advanced technology.

Outlook

- New finds of uranium deposits will be closer to the energy cliff.
- Time of depletion of net nuclear energy from uranium ores may not change significantly in the future, nor by new finds, nor by advanced technology.

World energy consumption statistical view

World energy consumption 2005, statistical view

World energy, physical flows actually produced energy units

World energy consumption 2005, physical view

J.W. Storm van Leeuwen 2006

Nuclear share of world electricity

J.W. Storm van Leeuwen 2006